Estimating the Impacts of Agricultural Best Management Practices in the Maricopa County PM₁₀ Non-Attainment Area

Paula Fields and Marty Wolf
Eastern Research Group (ERG), Inc.

Venus Sadeghi, Ph.D. URS Corporation

Mike George Arizona Department of Environmental Quality

Overview of Today's Presentation

- Project Background
- Project Scope
- Technical Approach
- Results

Project Background

- Serious PM₁₀ non-attainment area
- Previously unregulated sources included unpaved roads and lots, and agricultural activities
- Micro-scale study focused on impacts at two monitoring sites
- Key stakeholders: Governor's Ag BMP Committee, EPA Region IX, ADEQ, Farm Bureau, UA Extension, USDA/NRCS

Project Scope

- Maricopa County PM₁₀ Non-Attainment Area
- Three agricultural source types
 - Tillage and harvest
 - Non-cropland (wind erosion and unpaved roads/areas)
 - Cropland (wind erosion)
- PM₁₀ emissions for April 1995 design day
- Impacts from 30+ BMPs identified by the Governor's Committee

Methodology for Agricultural BMP Analysis

- Step 1: Determined applicability of BMPs based on crop type
- Step 2: Ranked BMPs based on likelihood of implementation
- Step 3: Determined range of control efficiencies by crop type
- Step 4: Established an implementation scenario as the basis for estimating emission reductions
 - BMPs most likely to be implemented
 - Compliance factor of 80%
 - Relevancy factors based on crop type
 - Net control efficiencies for each BMP by crop type

BMP Applicability and Ranking - Tillage and Harvest

		Applicable Crop						
ВМР	Ranking	Cotton	Wheat	Barley	Corn	Alfalfa/ Other Hay	Vegetables	Citrus
Chemical irrigation	1-4	Т			Т			
Combining tractor operations	1	Т	Т	Т	Т		Т	Т
Equipment modification	3-5	Т	Т	Т	Т	Т		
Limited activity during high-winds	1-3	Т	Т	Т	Т	Т	Т	Т
Multi-year crop	1	Т	Т	Т	Т			
Planting based on soil moisture	1	Т	Т	Т	Т		Т	
Reduced harvest activity	1	Т				Т		
Reduced tillage system	4	Т	Т	Т	Т			
Tillage based on soil moisture	2		Т	Т	Т			
Timing of tillage operation	1	Т	Т	Т	Т			

BMP Applicability and Ranking - Non-Cropland

		Applicable Crop								
BMP	Ranking	Cotton	Wheat	Barley	Corn	Alfalfa/ Other Hay	Vegetables	Citrus		
Access restriction	1	Т	Т	Т	Т	Т	Т	Т		
Aggregate cover	3	Т	Т	Т	Т	Т	Т	Т		
Artificial wind barrier	10	Т	Т	Т	Т	Т	Т	Т		
Critical area planting	5	Т	Т	Т	Т	Т	Т	Т		
Manure application	1	Т	Т	Т	Т	Т	Т	Т		
Reduced vehicle speed	1	Т	Т	Т	Т	Т	Т	Т		
Synthetic particulate suppressant	7	Т	Т	Т	Т	Т	Т	Т		
Track-out control system	5-7	Т	Т	Т	Т	Т	Т	Т		
Tree, shrub, or windbreak planting	9	Т	Т	Т	Т	Т	Т	Т		
Watering	3	Т	Т	Т	Т	Т	Т	Т		

BMP Applicability and Ranking - Cropland

					Applicabl	e Crop		
ВМР	Ranking	Cotton	Wheat	Barley	Corn	Alfalfa/ Other Hay	Vegetables	Citrus
Artificial wind barrier	10					Т	Т	Т
Cover crop	4	Т	Т	Т	Т		Т	Т
Cross-wind ridges	3	Т	Т	Т	Т		Т	
Cross-wind strip cropping	10		Т	Т	Т	Т	Т	
Cross-wind vegetative strips	10	Т	Т	Т	Т		Т	
Manure application	3	Т	Т	Т	Т			
Mulching	10	Т						Т
Multi-year crop	1	Т	Т	Т	Т			
Permanent cover	8							
Planting based on soil moisture	2	Т	Т	Т	Т		Т	
Residue management	1	Т	т	Т	Т			
Sequential cropping	5	Т	Т	Т	Т		Т	
Surface roughening	2	Т	Т	Т	Т		Т	
Tree, shrub, or windbreak planting	9	Т	Т	Т	Т	Т	Т	Т

Control Efficiencies for BMPs Most Likely to be Implemented

	ВМР							
			Control Efficiency					
Category	Action	Minimum	Maximum	Mid-point				
Tillage	Combining Tractor Operations	35%	50%	43%				
	Limited Activity During High-Wind Events	25%	25%	25%				
	Multi-Year Crops	50%	75%	63%				
Harvest	Combining Tractor Operations	35%	50%	43%				
	Reduced Harvest Activity	29%	71%	50%				
Non-Cropland	Access Restriction	0%	3%	2%				
	Reduced Vehicle Speed	7%	77%	42%				
Cropland	Multi-Year Crops	50%	75%	63%				
	Residue Management	39%	92%	65%				
	Timing of Tilling Operations	50%	60%	55%				

Compliance Factor

- Percentage of farms expected to comply (i.e., implement at least one BMP from each category)
- EPA default = 80%
- Percentage of farm land on farms >10 acres = 99.8%
- Overall compliance factor = 80%

Relevancy Factor

- Percentage of compliant farms expected to implement a given BMP, by crop
- Example: Tillage emissions from cotton
 - Combining tractor operations (23%)
 - Limited activity on high-wind days (47%)
 - Multi-year crops; switch to alfalfa (30%)

Net Control Efficiency

Net Control Efficiency = Control Efficiency × Compliance Factor × Relevancy Factor

	Summary	Net Control Efficiency by Applicable Crop (%)							
Category	BMP	Cotton	Wheat	Barley	Corn	Alfalfa/Hay	Vegetables	Citrus	
Tillage	Combining Tractor Operations	7.9	7.9	7.9	7.9	N/A	11.2	11.2	
	Limited Activity During High-Wind Events	9.3	9.3	9.3	9.3	20.0	13.2	13.2	
	Multi-Year Crops	15.8	15.8	15.8	15.8		N/A		
Harvest	Combining Tractor Operations	17.0	33.9	33.9	33.9	N/A	33.9	33.9	
	Reduced Harvest Activity	20.0	20.0 N/A			39.9 N/A		'A	
Non-Cropland	Access Restriction	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
	Reduced Vehicle Speed	16.8	16.8	16.8	16.8	16.8	16.8	16.8	
Cropland	Multi-Year Crops	23.9	23.9	23.9	23.9				
	Residue Management	12.2	18.3	18.3	12.2	N/A			
	Timing of Tilling Operations	10.2	15.4	15.4	10.2		1 4/2 %		
	Planting Based on Soil Moisture	5.6	N	/A	5.6				

N/A= Not applicable.

Methodology for Estimating 1995 Design Day Emissions

- Determined emission estimating technique (EET)
- Collected activity data
- Determined percentage of county farmland within non-attainment area = 62.8%
- Developed spreadsheets and performed calculations
- Quality-assured spreadsheets

Emission Estimating Technique - Tillage

$$EF = k(4.8)s^{0.6}$$

where:

EF = tillage emission factor (lbs PM10/acre-pass);

 $k = particle size multiplier (value of 0.15 for <math>PM_{10}$); and

s = soil silt content (percent).

$$Tillage_{Crop} = EF \times AP_{Crop} \times A_{crop} \times AF \times F$$

where:

 $Tillage_{Crop}$ = tillage emissions for each crop type (lbs PM_{10}); EF = tillage emission factor (lbs PM_{10} /acre-pass);

AP_{Crop} = number of tillage acre-passes per acre for each crop type;
Ac_{rop} = total number of tilled acres for each crop type (acres);
AF = fraction of annual activity occurring on April 9; and

= fraction of Maricopa County farmland within non-

attainment area.

Emission Estimating Technique - Harvest

$$Harvest_{Crop} = EF \times A_{Crop} \times F$$

where:

 $Harvest_{Crop}$ = harvest emissions for each crop type (lbs PM_{10});

EF = harvest emission factor (lbs $PM_{10}/acre$);

A_{Crop} = total number of reported acres for each crop type (acre); and

F = fraction of Maricopa County farmland within non-

attainment area.

Emission Estimating Technique - Wind Erosion

$EF = 0.0125 \times I \times C \times K \times L \times V$

where:

```
\begin{array}{lll} EF &=& PM_{10}\,emission\,factor\,(tons/acre/year);\\ 0.0125 &=& fraction\,of\,suspended\,particles\,that\,are\,PM_{10};\\ I &=& soil\,erodibility\,(tons/acre/year);\\ C &=& climatic\,factor\,(unitless);\\ K &=& surface\,roughness\,factor\,(unitless);\\ LN &=& unsheltered\,field\,width\,factor\,(unitless);\,and\\ VN &=& vegetative\,cover\,factor\,(unitless). \end{array}
```

Wind Erosion_{Crop} = $EF \times Acres \times F$

where:

 $\begin{array}{lll} Wind \ Erosion_{Crop} & = & wind \ erosion \ emissions \ for \ each \ crop \ type \\ & \ (lbs \ PM_{10}/year); \\ EF & = & wind \ erosion \ emission \ factor \ (lbs \ PM_{10}/acre/year); \\ Acres & = & acres \ of \ cropland \ or \ non-crop \ land \ (acres); \\ F & = & fraction \ of \ Maricopa \ County \ farmland \ within \ non-attainment \ area. \end{array}$

Emission Estimating Technique - Travel on Unpaved Roads

 $EF = (0.36)(5.9)(s/12)(S/30)(W/3)^{0.7}(w/4)^{0.5}$

where:

```
EF = re-entrained unpaved road dust emission factor (lbs/VMT);
0.36 = aerodynamic particle size multiplier for PM10;
5.9 = constant;
s = silt content of road surface material (percent);
S = mean vehicle speed (mi/hr);
W = mean vehicle weight (ton); and
w = mean number of wheels (unitless).
```

$Unpaved = EF \times VMT \times F$

where:

```
Unpaved = emissions (lbs PM 10/day);

EF = emission factor (lbs/VMT);

VMT = VMT estimate (VMT/day); and

F = fraction of Maricopa County farmland within non-attainment area.
```


1995 Design Day Emissions

Category	Activity	Design-Day Emissions (lbs/day)	Percentage of Total
Tillage and Harvest	Tillage	54,667	1.6%
	Harvest	0	0.0%
Non-Cropland	Wind Erosion	325,895	9.4%
	Unpaved Road Travel	41,561	1.2%
Cropland	Wind Erosion	3,042,794	87.8%
Total		3,464,917	100.0%

Methodology for Estimating 2006 Design-Day Emissions and Reductions

- Estimated percentage of land expected to go out of production between 1995 and 2006 = 37%
- Applied 37% land use factor and mid-point BMP control efficiencies to 1995 design day emissions to obtain 2006 design-day emissions
- Applied 37% land use factor and range of BMP control efficiencies to obtain range of emission reductions

2006 Projected Design Day Emissions

Category	Activity	Projected Emissions (lbs/day)	Percentage of Total
Tillage and Harvest	Tillage	23,467	1.7%
	Harvest	0	0.0%
Non-Cropland	Wind Erosion	204,186	14.8%
	Travel on Unpaved Roads	21,528	1.6%
Cropland	Wind Erosion	1,126,101	81.9%
Total		1,375,282	100.0%

Potential Emission Reductions from BMP Implementation

		Total Design-Day	Land Use	BMP Implementat	tion Scenario	Total	
Category	Activity	Emissions (lbs/day)	Reduction (lbs/day)	BMP	BMP Reduction	Reduction (lbs/day)	
Tillage and Harvest	Tillage	54,667	20,416	Combining Tractor Operations	2,910	31,200	
				Limited Activity During High-Wind vents	3,423		
				Multi-Year Crops	4,450		
	Harvest	0	0	Combining Tractor Operations	0	0	
				Reduced Harvest Activity			
Non-Cropland	Unpaved Road Travel	41,561	15,521	Access Restriction 156		20,034	
				Reduced Vehicle Speed	4,357		
	Wind Erosion	325,895	121,709	N/A		121,709	
Cropland	Wind Erosion	3,042,794	1,136,362	Multi-Year Crops	359,556	1,916,693	
				Residue Management	183,068		
				Timing of Tilling Operations	153,810		
				Planting Based on Soil Moisture	83,897		
Total		3,464,917	1,294,008		795,627	2,089,636	

Conclusions

- Design-day emissions based on best available data
- A reduction of 57.5% to 63.0% (mid-point = 60.3%) in agricultural emissions is expected by 2006 from implementation of agricultural BMPs and land going out of production
- Actual reductions may be more or less than predicted due to
 - Selection of BMPs in implementation scenario
 - Compliance rate
 - Relevancy factors
 - BMP control efficiencies

Significant Accomplishments

- Stakeholder involvement in process and buy-in of results
- PM₁₀ SIP shows attainment by 2006
- Technically rigorous analysis that can be used in areas where agricultural emissions need to be controlled

